18 research outputs found

    Image-based malware classification: A space filling curve approach

    Get PDF
    Anti-virus (AV) software is effective at distinguishing between benign and malicious programs yet lack the ability to effectively classify malware into their respective family classes. AV vendors receive considerably large volumes of malicious programs daily and so classification is crucial to quickly identify variants of existing malware that would otherwise have to be manually examined. This paper proposes a novel method of visualizing and classifying malware using Space-Filling Curves (SFC\u27s) in order to improve the limitations of AV tools. The classification models produced were evaluated on previously unseen samples and showed promising results, with precision, recall and accuracy scores of 82%, 80% and 83% respectively. Furthermore, a comparative assessment with previous research and current AV technologies revealed that the method presented her was robust, outperforming most commercial and open-source AV scanner software programs

    Image-based malware classification hybrid framework based on space-filling curves

    Get PDF
    There exists a never-ending “arms race” between malware analysts and adversarial malicious code developers as malevolent programs evolve and countermeasures are developed to detect and eradicate them. Malware has become more complex in its intent and capabilities over time, which has prompted the need for constant improvement in detection and defence methods. Of particular concern are the anti-analysis obfuscation techniques, such as packing and encryption, that are employed by malware developers to evade detection and thwart the analysis process. In such cases, malware is generally impervious to basic analysis methods and so analysts must use more invasive techniques to extract signatures for classification, which are inevitably not scalable due to their complexity. In this article, we present a hybrid framework for malware classification designed to overcome the challenges incurred by current approaches. The framework incorporates novel static and dynamic malware analysis methods, where static malware executables and dynamic process memory dumps are converted to images mapped through space-filling curves, from which visual features are extracted for classification. The framework is less invasive than traditional analysis methods in that there is no reverse engineering required, nor does it suffer from the obfuscation limitations of static analysis. On a dataset of 13,599 obfuscated and non-obfuscated malware samples from 23 families, the framework outperformed both static and dynamic standalone methods with precision, recall and accuracy scores of 97.6%, 97.6% and 97.6% respectively

    Robustness of Image-Based Malware Classification Models Trained with Generative Adversarial Networks

    Get PDF
    As malware continues to evolve, deep learning models are increasingly used for malware detection and classification, including image based classification. However, adversarial attacks can be used to perturb images so as to evade detection by these models. This study investigates the effectiveness of training deep learning models with Generative Adversarial Network-generated data to improve their robustness against such attacks. Two image conversion methods, byte plot and space-filling curves, were used to represent the malware samples, and a ResNet-50 architecture was used to train models on the image datasets. The models were then tested against a projected gradient descent attack. It was found that without GAN generated data, the models’ prediction performance drastically decreased from 93-95% to 4.5% accuracy. However, the addition of adversarial images to the training data almost doubled the accuracy of the models. This study highlights the potential benefits of incorporating GAN-generated data in the training of deep learning models to improve their robustness against adversarial attacks

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link
    corecore